English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6533/14246 (46%)
Visitors : 4576730      Online Users : 404
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.fy.edu.tw/ir/handle/987654321/7663


    Title: Effect of methylglyoxal on intracellular calcium levels and viability in renal tubular cells.
    Authors: Chung-Ren Jan;Ching-Hsein Chen;Shu-Ching Wang;Soong-Yu Kuo
    Contributors: 輔英科技大學 醫學檢驗生物技術系
    Keywords: Apoptosis;Ca2+ signaling;Dicarbonyl;Fura-2;MDCK;Methylglyoxal;Necrosis;Renal cells
    Date: 2005-03-01
    Issue Date: 2010-10-21 15:29:20 (UTC+8)
    Abstract: Methylglyoxal (2-oxopropanal), a physiological glucose metabolite, is a highly reactive dicarbonyl compound that can induce stress in cells and cause apoptotic cell death. This study examines the early signaling effects of methylglyxal on renal cells. It was found that methylglyoxal caused a slow and sustained rise of intracellular Ca2+ concentration ([Ca2+]i) in a concentration-dependent manner (EC50=1.8 mM). Methylglyoxal also induced a [Ca2+]i rise when extracellular Ca2+ was removed, but the magnitude was reduced by 80%. Depletion of intracellular Ca2+ stores with thapsigargin (TG), an endoplasmic reticulum (ER) Ca2+ pump inhibitor, did not affect methylglyoxal's effect. In Ca2+-free medium, the methylglyoxal-induced [Ca2+]i rise was abolished by depleting stored Ca2+ with carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler). Methylglyoxal-caused [Ca2+]i rise in the Ca2+-containing medium was not affected by modulation of protein kinase C activity, presence of voltage-gated Ca2+ channel blockers, or preincubation with thiol-containing antioxidants. U73122, an inhibitor of phospholipase C, abolished ATP (but not methylglyoxal)-induced [Ca2+]i rise. Furthermore, the [Ca2+]i-elevating effect of methylglyoxal was cell type-dependent, because methylglyoxal failed to cause [Ca2+]i rises in CHO-K1, neutrophils, or platelets. Pretreatment with methylglyoxal for 0–24 h decreased cell viability in a concentration- and time-dependent manner. Meanwhile, methylglyoxal-induced cell death involved apoptotic and necrotic events, the former being the dominant. These findings suggest that methylglyoxal induced a significant rise in [Ca2+]i in Madin–Darby canine kidney (MDCK) renal tubular cells by stimulating both extracellular Ca2+ influx and CCCP-sensitive intracellular Ca2+ release via as yet unidentified mechanisms. The cell type-specific Ca2+ signaling may play an important role in the early process of cytotoxic action of methylglyoxal.
    Relation: Cell. Signal. 17(7),847-855
    Appears in Collections:[醫學檢驗生物技術系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML673View/Open


    All items in FYIR are protected by copyright, with all rights reserved.


    本網站典藏內容為學術研究目的之提供,請尊重著作權人之權益合理使用,請勿任意重製、轉貼、改作及散佈。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback