English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6024/14565 (41%)
Visitors : 13750017      Online Users : 269
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.fy.edu.tw:8080/ir/handle/987654321/2253

    Title: Improvement of Monacolin K, γ-Aminobutyric Acid and Citrinin Production Ratio as a Function of Environmental Conditions of Monascus purpureus NTU 601.
    Authors: Wang Jyh-Jye;Lee CL;Pan TM
    Contributors: 輔英科技大學 保健營養系
    Date: 2003-11-01
    Issue Date: 2010-09-26 14:12:22 (UTC+8)
    Abstract: Monascus, a traditional Chinese fermentation fungus, is used as a natural dietary supplement. Its metabolic products monacolin K and gamma-aminobutyric acid (GABA) have each been proven to be a cholesterol-lowering drug and a hypotensive agent. Citrinin, another secondary metabolite, is toxic to humans, thus lowering the acceptability of red mold rice to the general public. In this study, the influence of different carbon and nitrogen sources, and fatty acid or oils, on the production of monacolin K, citrinin and GABA by Monascus purpureus NTU 601 was studied. When 0.5% ethanol was added to the culture medium, the production of citrinin decreased from 813 ppb to 561 ppb while monacolin K increased from 136 mg/kg to 383 mg/kg and GABA increased from 1,060 mg/kg to 7,453 mg/kg. In addition, response surface methodology was used to optimize culture conditions for monacolin K, citrinin and GABA production, and data were collected according to a three-factor (temperature, ethanol concentration and amount of water supplemented), three-level central composite design. When 500 g rice was used as a solid substrate with 120 ml water and 0.3% ethanol, the production of monacolin K at 30 degrees C increased from 136 mg/kg to 530 mg/kg, GABA production increased from 1,060 mg/kg to 5,004 mg/kg and citrinin decreased from 813 ppb to 460 ppb.
    Relation: J Ind Microbiol & Biotechnol 30(11),669-679
    Appears in Collections:[保健營養系] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in FYIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback