English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6047/14565 (42%)
Visitors : 13646303      Online Users : 307
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.fy.edu.tw:8080/ir/handle/987654321/2502

    Title: Using a biological aerated filter to treat mixed water-borne volatile organic compounds and assessing its emissions
    Authors: Cheng, Wen-Hsi
    Contributors: 輔英科技大學 職業安全衛生系
    Keywords: volatile organic compounds;biological aerated filter;total organic loading;emission
    Date: 2009-11-01
    Issue Date: 2010-09-27 16:48:19 (UTC+8)
    Abstract: A biological aerated filter (BAF) was evaluated as a fixed-biofilm process to remove water-borne volatile organic compounds (VOCs) from a multiple layer ceramic capacitor (MLCC) manufacturing plant in southern Taiwan. The components of VOC were identified to be toluene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, bromodichloromethane and isopropanol (IPA). The full-scale BAF was constructed of two separate reactors in series, respectively, using 10- and 15-cm diameter polypropylene balls as the packing materials and a successful preliminary bench-scale experiment was performed to feasibility. Experimental results show that the BAF removed over 90% chemical oxygen demand (COD) from the influent with (1188 ± 605) mg/L of COD. A total organic loading of 2.76 kg biochemical oxygen demand (BOD)/(m3 packing·d) was determined for the packed bed, in which the flow pattern approached that of a mixed flow. A limited VOC concentration of (0.97 ± 0.29) ppmv (as methane) was emitted from the BAF system. Moreover, the emission rate of VOC was calculated using the proposed formula, based on an air-water mass equilibrium relationship, and compared to the simulated results obtained using the Water 9 model. Both estimation approaches of calculation and model simulation revealed that 0.1% IPA (0.0031–0.0037 kg/d) were aerated into a gaseous phase, and 30% to 40% (0.006–0.008 kg/d) of the toluene were aerated.
    Relation: Journal of Environmental Sciences,Volume 21, Issue 11, Pages 1497-1502
    Appears in Collections:[職業安全衛生系] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in FYIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback