English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6024/14565 (41%)
Visitors : 13731369      Online Users : 324
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.fy.edu.tw:8080/ir/handle/987654321/3042

    Title: Purification, molecular cloning and mechanism of action of graminelysin I, a snake-venom-derived metalloproteinase that induces apoptosis of human endothelial cells.
    Authors: WU, Wen Bin;CHANG, Shin C.;LIAU,Ming-Yi;HUANG, Tur-Fu
    Contributors: 輔英科技大學 生物科技系
    Keywords: DNA fragmentation;endothelial cell detachment;extracellular matrix;metalloprotease;reprolysin
    Date: 2001-08-01
    Issue Date: 2010-09-28 10:27:21 (UTC+8)
    Abstract: Apoptosis, a programmed, physiological mode of cell death, is important in tissue homoeostasis. Here we report that a new metalloproteinase, graminelysin I, purified from Trimeresurus gramineus venom, induced apoptosis of human endothelial cells as examined by electrophoresis and flow cytometry. Graminelysin I contains only a metalloproteinase domain. It is a single-chain proteinase with a molecular mass of 27020Da. cDNA sequence analysis revealed that the disintegrin-like and cysteine-rich domains of the putative precursor protein of graminelysin I are likely to be processed post-translationally, producing the proteinase domain (graminelysin I). Graminelysin I cleaved the a chain of fibrinogen preferentially and cleaved the b chain either on longer incubation or at higher concentration. Graminelysin I inhibited the adhesion of human umbilical-vein endothelial cells (HUVECs) to immobilized fibrinogen and induced HUVECs detachment in a dose-dependent manner. These effects on HUVECs were abolished when graminelysin I was pretreated with EDTA. However, graminelysin I did not inhibit the adhesion of HUVECs to immobilized collagen. HUVECs were susceptible to death after treatment with graminelysin I when they were cultured on immobilized fibrinogen. In contrast, HUVECs were rather resistant to treatment with graminelysin I if they were cultured on immobilized collagen. Furthermore, graminelysin I induced apoptosis of HUVECs in a dose-dependent manner. Similarly, its apoptosis-inducing activity was blocked if it was treated with EDTA. These results suggest that the catalytic activity of graminelysin I on matrix proteins contributes to its apoptosis-inducing activity.
    Relation: Biochem. L. 357: p.719-728
    Appears in Collections:[生物科技系] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in FYIR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback