English  |  正體中文  |  简体中文  |  Items with full text/Total items : 6047/14565 (42%)
Visitors : 13678796      Online Users : 380
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.fy.edu.tw:8080/ir/handle/987654321/6654


    Title: Inhibition of 2-p-mercaptophenyl-1,4- naphthoquinone on human platelet function
    Authors: Ai Yu Shen;Mei Han Huang;Che-Ming Teng;Jong Shyan Wang
    Contributors: 輔英科技大學 醫學檢驗生物技術系
    Keywords: 2-p-mercaptophenyl-1;4-naphthoquinone;platelet;[Ca2+]i
    Date: 1999-03-01
    Issue Date: 2010-10-14 10:28:32 (UTC+8)
    Abstract: As widely assumed, platelets and coagulation system heavily influence the pathogenesis and progression of cardiovascular diseases. Some 1,4-naphthoquinone derivatives, such as vitamin K3, have been reported to increase the synthesis of coagulation proteins. In this study, we examine how 2-p-mercaptophenyl -1,4-naphthoquinone (NTP), a newly synthesized 1,4-naphthoquinone derivative, affects the platelet function in humans. A tapered parallel plate chamber which provided a range of shear stress covering the entire physiological range in human circulation is used to assess platelet adhesiveness on fibrinogen coated-surface. In addition, platelet aggregation and thromboxane B2 (TXB2) production by inducers are evaluated by the turbidimetric method and enzyme immunoassay kit, respectively. Moreover, platelets [Ca2+]i are measured using a dual-wavelength fluorescence spectrophotometer. Analysis results indicate that 1) NTP decreases the percentages of attached platelets at the locations in various shear stresses and the levels of platelet adhesiveness, denoted as the slope; 2) NTP can inhibit the platelet aggregation by ADP (2μM) and collagen (25μg/ml), and the IC50 are: 0.32 and 26.83 μg/ml, respectively, and 3) NTP markedly inhibits TXB2 formation and platelet [Ca2+]i elevation caused by ADP and collagen. Therefore, we conclude that NTP may inhibit platelet adhesiveness on fibrinogen coated-surface, aggregability, [Ca2+]i, and thromboxane production, and that it may be used as an antiplatelet agent.
    Relation: Life Sciences 65(1),45-53
    Appears in Collections:[醫學檢驗生物技術系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML1035View/Open


    All items in FYIR are protected by copyright, with all rights reserved.


    本網站典藏內容為學術研究目的之提供,請尊重著作權人之權益合理使用,請勿任意重製、轉貼、改作及散佈。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback