Fooyin University Institutional Repository:Item 987654321/9913
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 6024/14565 (41%)
造访人次 : 14105050      在线人数 : 382
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于FYIR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.fy.edu.tw:8080/ir/handle/987654321/9913


    题名: Flooding probability of urban area estimated by decision tree and artificial neural networks
    作者: Chen,Jeng-Chung;Shu,Ching-Sung;Ning,Shu-Kuang;Chen,Ho-Wen
    贡献者: 輔英科技大學 環境工程與科學系
    关键词: artificial neural networks;decision trees;flooding probability;satellite images
    日期: 2008
    上传时间: 2010-11-15 22:48:01 (UTC+8)
    摘要: Remote sensing, such as from satellite, has been recognized as useful for monitoring the changes in hydrology. In this study, we propose a way that is able to estimate flooding probability based on satellite data from the observation network of the World Meteorological Organization. Through a two-stage probability analysis, we can depict the area with high flooding potential in near-real time. In the first stage, decision trees offered a prompt and rough estimation of the flooding probability; in the second stage, artificial neural networks handle the rainfall forecast in a small-scale area. Case studies, simulating two rainfall events on 20 May 2004 and 11 July 2001, proved that our proposed method is promising for mitigating the flooding damage along urban drainage within the downtown area of Kaohsiung city.
    關聯: Journal of Hydroinformatics ,Vol 10 No 1 ,pp 57–67
    显示于类别:[環境工程與科學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML518检视/开启


    在FYIR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    本網站典藏內容為學術研究目的之提供,請尊重著作權人之權益合理使用,請勿任意重製、轉貼、改作及散佈。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈